3.9.58 \(\int \sqrt {\cot (c+d x)} (a+b \tan (c+d x))^{5/2} \, dx\) [858]

3.9.58.1 Optimal result
3.9.58.2 Mathematica [A] (verified)
3.9.58.3 Rubi [A] (verified)
3.9.58.4 Maple [B] (warning: unable to verify)
3.9.58.5 Fricas [B] (verification not implemented)
3.9.58.6 Sympy [F(-1)]
3.9.58.7 Maxima [F]
3.9.58.8 Giac [F(-1)]
3.9.58.9 Mupad [F(-1)]

3.9.58.1 Optimal result

Integrand size = 25, antiderivative size = 248 \[ \int \sqrt {\cot (c+d x)} (a+b \tan (c+d x))^{5/2} \, dx=\frac {i (i a-b)^{5/2} \arctan \left (\frac {\sqrt {i a-b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{d}+\frac {5 a b^{3/2} \text {arctanh}\left (\frac {\sqrt {b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{d}+\frac {i (i a+b)^{5/2} \text {arctanh}\left (\frac {\sqrt {i a+b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{d}+\frac {b^2 \sqrt {a+b \tan (c+d x)}}{d \sqrt {\cot (c+d x)}} \]

output
I*(I*a-b)^(5/2)*arctan((I*a-b)^(1/2)*tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/ 
2))*cot(d*x+c)^(1/2)*tan(d*x+c)^(1/2)/d+5*a*b^(3/2)*arctanh(b^(1/2)*tan(d* 
x+c)^(1/2)/(a+b*tan(d*x+c))^(1/2))*cot(d*x+c)^(1/2)*tan(d*x+c)^(1/2)/d+I*( 
I*a+b)^(5/2)*arctanh((I*a+b)^(1/2)*tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/2) 
)*cot(d*x+c)^(1/2)*tan(d*x+c)^(1/2)/d+b^2*(a+b*tan(d*x+c))^(1/2)/d/cot(d*x 
+c)^(1/2)
 
3.9.58.2 Mathematica [A] (verified)

Time = 1.16 (sec) , antiderivative size = 241, normalized size of antiderivative = 0.97 \[ \int \sqrt {\cot (c+d x)} (a+b \tan (c+d x))^{5/2} \, dx=\frac {\sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)} \left ((-1)^{3/4} (-a+i b)^{5/2} \arctan \left (\frac {\sqrt [4]{-1} \sqrt {-a+i b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )-(-1)^{3/4} (a+i b)^{5/2} \arctan \left (\frac {\sqrt [4]{-1} \sqrt {a+i b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )+b^2 \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}+\frac {5 a^{3/2} b^{3/2} \text {arcsinh}\left (\frac {\sqrt {b} \sqrt {\tan (c+d x)}}{\sqrt {a}}\right ) \sqrt {1+\frac {b \tan (c+d x)}{a}}}{\sqrt {a+b \tan (c+d x)}}\right )}{d} \]

input
Integrate[Sqrt[Cot[c + d*x]]*(a + b*Tan[c + d*x])^(5/2),x]
 
output
(Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]]*((-1)^(3/4)*(-a + I*b)^(5/2)*ArcTan 
[((-1)^(1/4)*Sqrt[-a + I*b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]] 
- (-1)^(3/4)*(a + I*b)^(5/2)*ArcTan[((-1)^(1/4)*Sqrt[a + I*b]*Sqrt[Tan[c + 
 d*x]])/Sqrt[a + b*Tan[c + d*x]]] + b^2*Sqrt[Tan[c + d*x]]*Sqrt[a + b*Tan[ 
c + d*x]] + (5*a^(3/2)*b^(3/2)*ArcSinh[(Sqrt[b]*Sqrt[Tan[c + d*x]])/Sqrt[a 
]]*Sqrt[1 + (b*Tan[c + d*x])/a])/Sqrt[a + b*Tan[c + d*x]]))/d
 
3.9.58.3 Rubi [A] (verified)

Time = 1.10 (sec) , antiderivative size = 205, normalized size of antiderivative = 0.83, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {3042, 4729, 3042, 4049, 27, 3042, 4138, 2035, 2257, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sqrt {\cot (c+d x)} (a+b \tan (c+d x))^{5/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sqrt {\cot (c+d x)} (a+b \tan (c+d x))^{5/2}dx\)

\(\Big \downarrow \) 4729

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \int \frac {(a+b \tan (c+d x))^{5/2}}{\sqrt {\tan (c+d x)}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \int \frac {(a+b \tan (c+d x))^{5/2}}{\sqrt {\tan (c+d x)}}dx\)

\(\Big \downarrow \) 4049

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\int \frac {5 a b^2 \tan ^2(c+d x)+2 b \left (3 a^2-b^2\right ) \tan (c+d x)+a \left (2 a^2-b^2\right )}{2 \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx+\frac {b^2 \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}{d}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {1}{2} \int \frac {5 a b^2 \tan ^2(c+d x)+2 b \left (3 a^2-b^2\right ) \tan (c+d x)+a \left (2 a^2-b^2\right )}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx+\frac {b^2 \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}{d}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {1}{2} \int \frac {5 a b^2 \tan (c+d x)^2+2 b \left (3 a^2-b^2\right ) \tan (c+d x)+a \left (2 a^2-b^2\right )}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx+\frac {b^2 \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}{d}\right )\)

\(\Big \downarrow \) 4138

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {\int \frac {5 a b^2 \tan ^2(c+d x)+2 b \left (3 a^2-b^2\right ) \tan (c+d x)+a \left (2 a^2-b^2\right )}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)} \left (\tan ^2(c+d x)+1\right )}d\tan (c+d x)}{2 d}+\frac {b^2 \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}{d}\right )\)

\(\Big \downarrow \) 2035

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {\int \frac {5 a b^2 \tan ^2(c+d x)+2 b \left (3 a^2-b^2\right ) \tan (c+d x)+a \left (2 a^2-b^2\right )}{\sqrt {a+b \tan (c+d x)} \left (\tan ^2(c+d x)+1\right )}d\sqrt {\tan (c+d x)}}{d}+\frac {b^2 \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}{d}\right )\)

\(\Big \downarrow \) 2257

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {\int \left (\frac {5 a b^2}{\sqrt {a+b \tan (c+d x)}}+\frac {2 \left (a^3-3 b^2 a+b \left (3 a^2-b^2\right ) \tan (c+d x)\right )}{\sqrt {a+b \tan (c+d x)} \left (\tan ^2(c+d x)+1\right )}\right )d\sqrt {\tan (c+d x)}}{d}+\frac {b^2 \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}{d}\right )\)

\(\Big \downarrow \) 2009

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {b^2 \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}{d}+\frac {i (-b+i a)^{5/2} \arctan \left (\frac {\sqrt {-b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )+5 a b^{3/2} \text {arctanh}\left (\frac {\sqrt {b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )+i (b+i a)^{5/2} \text {arctanh}\left (\frac {\sqrt {b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d}\right )\)

input
Int[Sqrt[Cot[c + d*x]]*(a + b*Tan[c + d*x])^(5/2),x]
 
output
Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]]*((I*(I*a - b)^(5/2)*ArcTan[(Sqrt[I*a 
 - b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]] + 5*a*b^(3/2)*ArcTanh[ 
(Sqrt[b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]] + I*(I*a + b)^(5/2) 
*ArcTanh[(Sqrt[I*a + b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])/d + 
 (b^2*Sqrt[Tan[c + d*x]]*Sqrt[a + b*Tan[c + d*x]])/d)
 

3.9.58.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2035
Int[(Fx_)*(x_)^(m_), x_Symbol] :> With[{k = Denominator[m]}, Simp[k   Subst 
[Int[x^(k*(m + 1) - 1)*SubstPower[Fx, x, k], x], x, x^(1/k)], x]] /; Fracti 
onQ[m] && AlgebraicFunctionQ[Fx, x]
 

rule 2257
Int[(Px_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (c_.)*(x_)^4)^(p_.), x_Symbol 
] :> Int[ExpandIntegrand[Px*(d + e*x^2)^q*(a + c*x^4)^p, x], x] /; FreeQ[{a 
, c, d, e, q}, x] && PolyQ[Px, x] && IntegerQ[p]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4049
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b^2*(a + b*Tan[e + f*x])^(m - 2)*((c 
+ d*Tan[e + f*x])^(n + 1)/(d*f*(m + n - 1))), x] + Simp[1/(d*(m + n - 1)) 
 Int[(a + b*Tan[e + f*x])^(m - 3)*(c + d*Tan[e + f*x])^n*Simp[a^3*d*(m + n 
- 1) - b^2*(b*c*(m - 2) + a*d*(1 + n)) + b*d*(m + n - 1)*(3*a^2 - b^2)*Tan[ 
e + f*x] - b^2*(b*c*(m - 2) - a*d*(3*m + 2*n - 4))*Tan[e + f*x]^2, x], x], 
x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2 
, 0] && NeQ[c^2 + d^2, 0] && IntegerQ[2*m] && GtQ[m, 2] && (GeQ[n, -1] || I 
ntegerQ[m]) &&  !(IGtQ[n, 2] && ( !IntegerQ[m] || (EqQ[c, 0] && NeQ[a, 0])) 
)
 

rule 4138
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) 
 + (f_.)*(x_)]^2), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, S 
imp[ff/f   Subst[Int[(a + b*ff*x)^m*(c + d*ff*x)^n*((A + B*ff*x + C*ff^2*x^ 
2)/(1 + ff^2*x^2)), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, c, d, e, f 
, A, B, C, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + 
 d^2, 0]
 

rule 4729
Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Simp[(c*Cot[a 
+ b*x])^m*(c*Tan[a + b*x])^m   Int[ActivateTrig[u]/(c*Tan[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownTangentIntegrandQ[u, 
x]
 
3.9.58.4 Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(2949\) vs. \(2(202)=404\).

Time = 36.74 (sec) , antiderivative size = 2950, normalized size of antiderivative = 11.90

method result size
default \(\text {Expression too large to display}\) \(2950\)

input
int(cot(d*x+c)^(1/2)*(a+b*tan(d*x+c))^(5/2),x,method=_RETURNVERBOSE)
 
output
1/4/d*(a+b*tan(d*x+c))^(1/2)*cot(d*x+c)^(1/2)/(cos(d*x+c)+1)/((sin(d*x+c)* 
cos(d*x+c)*a-cos(d*x+c)^2*b+b)/(cos(d*x+c)+1)^2)^(1/2)*(10*sin(d*x+c)*2^(1 
/2)*b^(3/2)*arctanh(((a*cos(d*x+c)+b*sin(d*x+c))*sin(d*x+c)/(cos(d*x+c)+1) 
^2)^(1/2)*(csc(d*x+c)+cot(d*x+c))/b^(1/2))*(-b+(a^2+b^2)^(1/2))^(1/2)*a^2+ 
2*sin(d*x+c)*2^(1/2)*((sin(d*x+c)*cos(d*x+c)*a-cos(d*x+c)^2*b+b)/(cos(d*x+ 
c)+1)^2)^(1/2)*(-b+(a^2+b^2)^(1/2))^(1/2)*a*b^2-sin(d*x+c)*(a^2+b^2)^(1/2) 
*ln((cos(d*x+c)*cot(d*x+c)*a-2*a*cot(d*x+c)+2*sin(d*x+c)*(csc(d*x+c)*(cot( 
d*x+c)^2*a-2*cot(d*x+c)*csc(d*x+c)*a+csc(d*x+c)^2*a-2*b*csc(d*x+c)+2*cot(d 
*x+c)*b-a)*(cos(d*x+c)-1))^(1/2)*(b+(a^2+b^2)^(1/2))^(1/2)+2*(a^2+b^2)^(1/ 
2)*cos(d*x+c)+2*b*cos(d*x+c)-sin(d*x+c)*a+csc(d*x+c)*a-2*(a^2+b^2)^(1/2)-2 
*b)/(cos(d*x+c)-1))*(b+(a^2+b^2)^(1/2))^(1/2)*(-b+(a^2+b^2)^(1/2))^(1/2)*a 
^2+sin(d*x+c)*(a^2+b^2)^(1/2)*ln((cos(d*x+c)*cot(d*x+c)*a-2*a*cot(d*x+c)+2 
*sin(d*x+c)*(csc(d*x+c)*(cot(d*x+c)^2*a-2*cot(d*x+c)*csc(d*x+c)*a+csc(d*x+ 
c)^2*a-2*b*csc(d*x+c)+2*cot(d*x+c)*b-a)*(cos(d*x+c)-1))^(1/2)*(b+(a^2+b^2) 
^(1/2))^(1/2)+2*(a^2+b^2)^(1/2)*cos(d*x+c)+2*b*cos(d*x+c)-sin(d*x+c)*a+csc 
(d*x+c)*a-2*(a^2+b^2)^(1/2)-2*b)/(cos(d*x+c)-1))*(b+(a^2+b^2)^(1/2))^(1/2) 
*(-b+(a^2+b^2)^(1/2))^(1/2)*b^2+sin(d*x+c)*(a^2+b^2)^(1/2)*ln(-(-cos(d*x+c 
)*cot(d*x+c)*a+2*sin(d*x+c)*(csc(d*x+c)*(cot(d*x+c)^2*a-2*cot(d*x+c)*csc(d 
*x+c)*a+csc(d*x+c)^2*a-2*b*csc(d*x+c)+2*cot(d*x+c)*b-a)*(cos(d*x+c)-1))^(1 
/2)*(b+(a^2+b^2)^(1/2))^(1/2)+2*a*cot(d*x+c)+sin(d*x+c)*a-2*(a^2+b^2)^(...
 
3.9.58.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 4793 vs. \(2 (196) = 392\).

Time = 1.34 (sec) , antiderivative size = 9618, normalized size of antiderivative = 38.78 \[ \int \sqrt {\cot (c+d x)} (a+b \tan (c+d x))^{5/2} \, dx=\text {Too large to display} \]

input
integrate(cot(d*x+c)^(1/2)*(a+b*tan(d*x+c))^(5/2),x, algorithm="fricas")
 
output
Too large to include
 
3.9.58.6 Sympy [F(-1)]

Timed out. \[ \int \sqrt {\cot (c+d x)} (a+b \tan (c+d x))^{5/2} \, dx=\text {Timed out} \]

input
integrate(cot(d*x+c)**(1/2)*(a+b*tan(d*x+c))**(5/2),x)
 
output
Timed out
 
3.9.58.7 Maxima [F]

\[ \int \sqrt {\cot (c+d x)} (a+b \tan (c+d x))^{5/2} \, dx=\int { {\left (b \tan \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \sqrt {\cot \left (d x + c\right )} \,d x } \]

input
integrate(cot(d*x+c)^(1/2)*(a+b*tan(d*x+c))^(5/2),x, algorithm="maxima")
 
output
integrate((b*tan(d*x + c) + a)^(5/2)*sqrt(cot(d*x + c)), x)
 
3.9.58.8 Giac [F(-1)]

Timed out. \[ \int \sqrt {\cot (c+d x)} (a+b \tan (c+d x))^{5/2} \, dx=\text {Timed out} \]

input
integrate(cot(d*x+c)^(1/2)*(a+b*tan(d*x+c))^(5/2),x, algorithm="giac")
 
output
Timed out
 
3.9.58.9 Mupad [F(-1)]

Timed out. \[ \int \sqrt {\cot (c+d x)} (a+b \tan (c+d x))^{5/2} \, dx=\int \sqrt {\mathrm {cot}\left (c+d\,x\right )}\,{\left (a+b\,\mathrm {tan}\left (c+d\,x\right )\right )}^{5/2} \,d x \]

input
int(cot(c + d*x)^(1/2)*(a + b*tan(c + d*x))^(5/2),x)
 
output
int(cot(c + d*x)^(1/2)*(a + b*tan(c + d*x))^(5/2), x)